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concept of elastic response 
spectrum  
 
peak value  
of a response parameter  
of all possible linear single-degree-of-
freedom systems  
to a particular component of ground motion 

• K. Suyehiro, Japan, 1926 
a “Vibration Analyzer” to record the maximum amplitudes of 
deflection of a set of rods with periods between 0.22 and 
1.81 seconds 

• Von Karman, Biot, Hudson, Fung, Popov, … 

• Veletsos, Newmark, Hall, … 
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dKaM 

MKda // 

22 /4/  MK

22 /4/  da
The damping term in the equilibrium equation enters as a correction factor 
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Displacement and acceleration response spectra for a 
component of the Los Angeles earthquake of 2 October 
1933  
Housner (1941) 
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Response spectra from the NS El Centro record 
Newmark and Hall, 1982 
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“Typical response spectrum”  
Newmark and Hall, 1982 
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Elastic design spectrum for 0.5 g PGA, 5% 
damping and one sigma cumulative probability 
Newmark and Hall (1982) 
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combined acceleration – displacement spectrum 

acceleration spectrum 

Newmark’s design spectrum shown as: 

displacement spectrum 
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Ratio between maximum spectral acceleration and PGA 
 
2.71? 
2.5? 
3.0? 
 
Is it relevant? 
 
Maximum spectral displacement and corner period 
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Why constant velocity? 
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Why constant velocity? 
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Spectra from El Centro records  
and Newmark design spectra 
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Combined Sa – Sd spectra  
from El Centro records  
and Newmark design spectra 
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Displacement spectra 
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Velocity spectra 
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Acceleration spectra 
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Combination of the two 
horizontal components 
• peak values of acceleration and displacement are 
the same for the same distance and magnitude 

• the two recorded horizontal components of a 
ground motion, usually show different values of 
peak spectral acceleration and displacement 

• often mix the larger demand in acceleration with 
the smaller displacement and vice versa 

A rotating signal 

• Adopt the envelope spectrum? 

• Calculate the ordinate resulting from the square 
root of the sum of the squares? 
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Correction  to account for non linear response 

 Divide the ordinate of the elastic spectrum by m for frequencies up to 2 Hz (regions D and V) to 
obtain the acceleration inelastic spectrum. 

 Do the same in the frequency range between 2 and 8 Hz (region A), dividing by (2m-1)0.5 instead 

of m. 
 Keep the same acceleration in the elastic and inelastic spectrum for frequencies higher than 33 

Hz. 
 Link linearly the ordinates at 8 and 33 Hz in the logarithmic plot. 
 To obtain the inelastic displacement spectrum multiply all the ordinates of the inelastic 

acceleration spectrum by m. 
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Correction of the elastic 
design spectrum to account 
for energy dissipation only 

displacement reduction factor 

equivalent hysteretic damping  
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Correction of the elastic design spectrum 
to account for energy dissipation 

displacement reduction factor  ≈ 0.6 +/- 10% 
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1) Elastic spectrum 
2) Non linear acceleration spectrum 
3) Non linear displacement spectrum 
4) Enter structure period (e.g. 0.5 s) 
5) Read acceleration demand (e.g. 0.6 g) 
6) Read displacement demand (18 cm) 
7) Possible resulting design curve 
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Acceleration-based non-linear design 
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1) Elastic spectrum 

2) Reduce spectrum applying displacement reduction factor (e.g. =15%) 
3) this? 
4) or this? 
5) Enter design displacement (e.g. 30 cm) 
6) Read design acceleration (e.g. 0.4 g) 
7) Possible resulting design curve 

 

Displacement-based non-linear design 
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1) Comparison of possible design curves 
2) With a different shape of the constant velocity region 
3) The design curve may change 

 

Displacement-based non-linear design 
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Essentially conservation 
of corner periods 
 

WHY? 

(Akkar,2015)  

Correction of the elastic design spectrum  
to account for energy dissipation 
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Consider the correction of a displacement 
spectrum to account for energy dissipation: 
1. Corner period 
2. Goes here 
3. Thus producing a reduced spectrum  

i.e.: 
 Reduce displacement 
 Conserve period 
 Acceleration reduces 

proportionally to 
displacement as 

 

𝑺𝒂 = 
𝟒𝝅𝟐

𝑻𝟐 𝑺𝒅 
 

=5% 

=20% 
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Assume a pushover curve 
And an associated energy dissipation cycle 
Becaus of equivalent damping, should this point 
Go here (reducing displacement, conserving period, 
modifying acceleration)? 
Or here (reducing displacement, conserving acceleration, 
modifying period)? 
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Displacement reduction factor 

In today’s application this point 
Goes here 
But it should rather go here 
And the reduced spectrum is rather different 
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Re-definition of elastic design spectra 

• Abandon peak ground acceleration as a key parameter 

• Spectra based on two points:  
• maximum spectral acceleration and displacement with the 

corresponding periods of vibration 

• Abandon constant velocity 

• Shape of the intermediate region function of a single 
parameter 

• Points and shape defined as a function of: 
• magnitude 
• distance from epicenter or fault 
• source mechanism 
• expected duration or number of significant cycles 
• soil type 
• other factors? 
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Year Magnitude No. of Records 
Min Distance 

(km) 
Max Distance 

(km) 

1972 4.8 2 7.69 11.44 

1976 4.5-6.4 29 1.91 85.41 

1977 5.3 4 6.15 11.43 

1978 5.2-6.1 5 9.15 46.64 

1979 5.9 3 4.59 43.51 

1980 4.6-5.0 4 5.83 16.65 

1981 4.9-5.2 9 9.45 21.38 

1982 4.6 1 8.07 8.07 

1984 4.7-5.9 18 5.34 68.11 

1990 5.6-5.8 5 26.65 65.26 

1996 5.4 2 13.25 16.45 

1997 4.5-6.0 52 0.96 79.50 

1998 4.8-5.6 17 5.14 66.04 

2000 4.5-4.8 3 1.71 7.56 

2001 4.7-4.8 2 2.54 18.62 

2002 5.7 1 41.06 41.06 

2003 4.8 1 17.06 17.06 

2004 5.3 1 14.37 14.37 

2008 4.9 1 9.13 9.13 

2009 4.6-6.3 38 0.73 49.17 

2012 4.7-5.9 42 1.72 67.35 

2013 4.9-5.2 8 4.37 81.30 

2016 4.5-6.5 99 2.58 94.27 

2017 4.6-5.5 13 5.24 28.85 

 

360 two components records 
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Epicenters (on a 10 % in 50 y hazard map) 
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Twenty bins 

Number of 
available 
records 

r<10 km 10<r<20 km 20<r<30 km 30<r<50 km 50 km<r 

6.0 < M < 6.5 8 3 5 17 14 

5.5 < M < 6.0 15 38 27 24 11 

5.0 < M < 5.5 34 46 11 7  4 

4.5 < M < 5.0 54 42 0 0 0 
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Combination of the two horizontal components 

• derive one single horizontal acceleration signal 
from recorded ground motions, combining the 
two components instant by instant 
 

• nothing to do with the combination of actions 
on buildings, resulting from their response in 
different directions 
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Definition of TC TD SaC SdD 
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Points adopted at the first (displacement) and last (acceleration) intersection 
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Calculation of TC and TD 

Mean values of TC  and TD  
for each magnitude-distance bin 
compared with all available data 
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Definition of the interpolation function of TC 
 

Tc interpolated by a plane surface  
resulting by the combination of two lines  
 

At the maximum considered 
distance (r = 70 km): 

kTC0 is the value of TC at M = 6.5 and r = 70 
kTC1 is the rate of change of TC with M 
kTC2 is the rate of change of TC with r   

 At M = 6.5: 

 Equation of the surface: 
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Definition of the interpolation function of TD 
 

TD interpolated by a plane surface  
resulting by the combination of two lines  
 

At the maximum considered  
distance (r = 70 km): 

 At M = 6.5: 

 Equation of the surface: 
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Calculation of SdD and SaC 

Mean and +1s values of SdD  and SaC  
for each magnitude-distance bin 
compared with all available data 
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Definition of a general equation  
for the interpolation of SaC and SdD 
 
 
an over damped sinusoidal equation 
instead of a linear equation 

))((cos 3

))((2

10 xfkekkS xfk

0,00

0,50

1,00

1,50

2,00

2,50

0 20 40 60 80 100

S a
C

(g
)

r (km)

M =5.0

M = 5.5

M = 6.0

M = 6.5

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

0 20 40 60 80 100

S d
D

(c
m

)

r (km)

M = 5.0

M = 5.5

M = 6.0

M = 6.5



G. Michele Calvi                 Revisiting seismic demand and structure capacity  

Definition of the interpolation function of SaC 

 At r = 0: 

ka0   a minimum threshold value of SaC, at minimum magnitude,  
  at the epicenter (r = 0) 
ka1   a value that summed to ka0 will give the value of Sac  
  at r = 0 and M = 6.5, i.e. the maximum spectral acceleration 
kaM2  a factor that increases or reduces damping  
kaM3  a factor that normalizes the range of magnitude 

𝑺𝒂𝑪(𝒓=𝟎 = 𝒌𝒂𝟎 + 𝒌𝒂𝟏𝒆
−𝒌𝒂𝑴𝟐(𝟔.𝟓−𝑴 𝐜𝐨𝐬

𝝅

𝟐𝒌𝑴𝟑
𝟔. 𝟓 − 𝑴  
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Definition of the interpolation function of SaC 

 At M = 6.5: 

ka0   a minimum threshold value of SaC, at maximum magnitude (M = 6.5),  
  at maximum distance (r = 70 km) 
ka1   a value that summed to ka0 will give the value of Sac  
  at r = 0 and M = 6.5, i.e. the maximum spectral acceleration 
kar2  a factor that increases or reduces damping  
kar3  a factor that normalizes the range of distance 

𝑺𝒂𝑪(𝑴=𝟔.𝟓 = 𝒌𝒂𝟎 + 𝒌𝒂𝟏𝒆
−𝒌𝒂𝒓𝟐 𝒓 𝐜𝐨𝐬⁡

𝝅

𝟐𝑲𝒓𝟑
𝒓   
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Definition of the interpolation function of SaC 

 Resulting combined equation for the SaC surface  
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Definition of the interpolation function of SdD 

 Identical form and parameters 
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Best fit interpolation of TC and TD 

  
 



G. Michele Calvi                 Revisiting seismic demand and structure capacity  

Best fit interpolation of SaC and SaD 
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Parameter Mean +1s Used 

TC 

kTC0 (value of TC at M = 6.5 and r = 70) [s] 0.46 0.61 0.46 

kTC1 (rate of change of TC with M) 0.042 0.053 0.042 

kTC2 (rate of change of TC with r) 0.0028 0.0034 0.003 

TD 

kTD0 (value of TD at M = 6.5 and r = 70) [s] 2.27 2.69 2.27 

kTD1 (rate of change of TD with M) 0.13 0.11 0.13 

kTD2 (rate of change of TD with r) 0.0053 0.0043 0.005 

SaC 

ka0 (value of SaC, at minimum magnitude and zero distance) [g] 0.2 0.27 0.27 

ka1 (value to be summed to ka0 to obtain Sac at r = 0 and M = 6.5) [g] 1.15 1.35 1.35 

kaM2 (magnitude-acceleration damping correction factor)  0.5 0.48 0.48 

kar2 (distance-acceleration damping correction factor) 0.11 0.09 0.09 

SdD 

kd0 (value of SdD, at minimum magnitude and zero distance) [cm] 2.5 4.0 4.0 

kd1 (value to be summed to kd0 to obtain SdD at r = 0 and M = 6.5) [cm] 25.0 29.5 29.5 

kdM2 (magnitude-displacement damping correction factor)  1.39 1.55 1.55 

kdr2 (distance-displacement damping factor) 0.09 0.07 0.07 

SaC/SdD 

kM3 (factor that normalizes the valid range of magnitudes, 4.5 – 6.5) [Mw] - - 2.0 

kr3 (factor that normalizes the valid range of distances, 0 – 70) [km] - - 70 

Summary of optimal parameters 
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Mean and + 1s spectra for M = 6.5 and r = 0. 
Corner periods kept equal to the mean values to 
conserve the shape. 
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Design spectra first defined as a function of two points: 
 
• the longest period (TC) at which the spectral acceleration will be at the 

peak amplification (SaC)  
• the shortest period (TD) at which the spectral displacement will reach its 

maximum value (SdD) 

In the intermediate region 
shape defined by a 
parameter a: 

Spectral shape in the intermediate period region 
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Hydraulic Devices 
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Formulation of the parameter a 
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Combined Sa – Sd spectrum varying a 
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Acceleration spectrum varying a 
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Displacement spectrum varying a 
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Velocity spectrum spectrum varying a 
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Spectral shape in the intermediate period region 

 Calculation of the a parameter 
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Best a value  r<10 km 10<r<20 km 20<r<30 km 30<r<50 km 50 km<r 

6.0 < M < 6.5 2.5 2.4 2.3 2.1 1.8 

5.5 < M < 6.0 3.2 2.7 2.2 2.0 - 

5.0 < M < 5.5 3.4 3.1 2.5 - - 

4.5 < M < 5.0 3.5 3.2 - - - 

 Best fit 

 𝛼 = 3.6 − 0.4⁡ 𝑀 − 4.5 − 0.015𝑟  
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Best fitting surface of a 
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Variation of the spectral shape 
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Design spectra for 4.5 < M < 5.0  

Compared with mean and +1s spectra 
Compared with Bindi and Akkar GMPEs 

r < 10 km  10 km < r < 20 km 
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Design spectra for 5.0 < M < 5.5  

Compared with mean and +1s spectra 
Compared with Bindi and Akkar GMPEs 

10 km < 
r < 20 
km 

r < 10 
km  

20 km < 
r < 30 
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Design spectra for 5.5 < M < 6.0  

Compared with mean and +1s spectra 
Compared with Bindi and Akkar GMPEs  

< 10 km  

20-30 km  
30-50 km  

10-20 km  
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Design spectra for 6.0 < M < 6.5  

Compared with mean and +1s spectra 
Compared with Bindi and Akkar GMPEs  

< 10 km  

20-30 km  
30-50 km  

10-20 km  
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 Performance very satisfactory 
 

 Performance worse for low magnitude or long distance 
 

 Performance worse when bins comprise a smaller number 
of records 
 

 With acceleration amplification factor 2.5, peak values 
of spectral acceleration at 5 km corresponds to PGAs 
between 0.2 and 0.45 g for magnitudes between 4.5 
and 6.5 
 

 Spectral acceleration plateau do not capture single 
maximum recorded peaks 
 

 Predicted maximum spectral displacements in line with 
DDBD at large magnitudes and small distances 
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Effects of spectra shapes 
on design (and assessment) 

• definition of strength and displacement 
capacity to be attained in structural design: a 
rather casual business? differences of 100%  

• enormous differences in the risk associated to 
different structures, even if they all might be 
above a certain threshold 

• non linear time history analyses do not help in 
favoring a uniform risk level, since the input 
ground motions are derived from possibly 
biased design spectra 

• strict application of capacity design rules 
fundamental 
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EAL (expected annual loss) =  (𝒑𝒐 × 𝑫 𝒅𝑫 

as a tool to design 

D RP po 

Onset of Damage (OD) 1% 10 0,1 

Damage Control (DC)  10% 100 0,01 

Collapse (NC) 100% 1000 0,001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pozero 

Df 

pocollapse 

Dcollapse 

pof 

Dzero 

rectangle at the axes origin 0,10% 9,17% 

upper triangle 0,41% 37,16% 

upper rectangle 0,09% 8,26% 

lower rectangle 0,09% 8,26% 

lower triangle 0,41% 37,16% 

total EAL 1,09% 100,00% 
 

po = yearly probability of occurrence  
D = level of damage 
RP = return period (1/po) 
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EAL as a tool to design 
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EAL as a tool to design 
 
Derive an equation for 
the blue curve 
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Or (simpler and better): 

forced to pass through 
the two extreme points 
and governed by the 
single parameter a to 
pass through the f point. 

 
Pcollapse = 1/1000 
Pzerodamage = 1/10 
Pzerodamage = 1/100 

E.G.:  
Dcollapse = 100%   
Dzero = 1% 
Df = 10% 
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EAL as a tool to design 

CASE 
RP inducing 

D=1% 
RP inducing 

D=10% 
RP inducing 
D= 100% 

a EAL 
linear 

EAL 
equation Ratio 

1 10 100 1000 6.92 1,09% 0,48% 44% 
2 10 200 1000 8.03 0,84% 0,34% 40% 
3 10 100 2000 6.85 1,07% 0,44% 41% 
4 10 200 2000 7.88 0,77% 0,30% 39% 
5 20 100 1000 5.85 0,82% 0,42% 51% 
6 20 200 1000 7.07 0,57% 0,27% 48% 
7 20 100 2000 5.77 0,79% 0,38% 48% 
8 20 200 2000 6.92 0,52% 0,24% 46% 
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EAL as a tool to design 
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Definition of a capacity curve  
(including damping effects) 
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71 

m  3 

 = 9% 
 = 0.8 

m  3 

 = 17% 
 = 0.6 
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Definition of a capacity curve  
(including damping effects) 
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Definition of a capacity curve  
(including damping effects) 
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Definition of a capacity curve  
(including damping effects) 
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Effects of magnitude and distance 
Possible different return period 
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Design for frequent ground motion 

Design for elastic response,  
d < 20 mm; Sad = 0.35 g 

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

0 1 2 3 4 5 6 7

Sa
 (

g)

Sd (cm)

M=4.5 r=5km

M=6.5 r=40 km



G. Michele Calvi                 Revisiting seismic demand and structure capacity  

Design for rare ground motion 

Design for d =100 mm. 
Elastic response impossible and not compatible with 
design for frequent event.  
Consider correction factor  = 0.6. 
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This input definition may foster a radical change in 
design philosophy, though still within a general 
displacement-based approach. 
  
Progressive orientation of design towards damage 
limitations: to explore the possibility of a direct 
derivation of combined floor spectra. 
  
The preliminary definition of a design displacement 
compatible with a desired damage level, possibly 
referred to specific classes of non-structural elements, 
may consent the immediate estimate of the 
corresponding energy dissipation and required strength. 
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The dependency of acceleration and displacement 
demand and spectral shape on magnitude and distance 
only should be investigated considering a much more 
extensive data base.  
 

In the case of large earthquakes the distance to be 
considered is from epicenter, fault or focus?  
 
The focal depth has some influence on the results? 
 
The source mechanism and type of fault have an 
effect on the results or will these be included in the 
produced magnitude? 
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Local soil effect will have an impact on the spectra 
shape. 
Recent studies demonstrate that the correction factors 
depends on the acceleration level. 
 
Studies based on experimental and numerical data are 
under developments to provide appropriate correction 
factors. 
 
Magnitude and distance have an effect on ground 
motion duration and number of relevant cycles.  
This matter has to be included in the prediction 
equations, possibly together with effects of directivity. 
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Within the framework of design based on spectral 
demand and structure capacity, the effects of energy 
dissipation have been traditionally included in the 
demand side, correcting the spectra. 
 
It seems more rational to define alternative rules to 
switch the consideration of dissipation on the side of 
capacity, consistently with its nature related to 
structure response, not to ground motion demand.  
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The equations derived can be regarded as a different 
form of ground motion prediction equations. 
This may allow the derivation of innovative seismic 
hazard maps, passing directly from a probability 
assessment of potential events to the combination of 
spectra associated to each event to produce probability 
based design spectra. 
 
The representation of design spectra in the combined 
Sa – Sd form calls for the derivation of consistent 
ground motion time histories. Any correction to better 
fit a specific spectral region may be defined by an 
interval in both key parameters, rather than a period 
range.  
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El Centro ground motion, Imperial 
Valley earthquake, 18 May 1940  

A fortunate unicorn or the ancestral 
ape of all possible ground motions?  

Rather the opportunity for intelligent 
scientists to justify theories and 
models that were already in their minds 


